
Roundabout: Solving PFC Deadlocks with
Distributed Detection and Buffer Collaboration

Kai Lv∗‡, Heng Pan†, Chengjun Jia§, Jiaxing Zhang∗‡, Luyang Li∗‡, Jianer Zhou¶, Yanbiao Li†

Zhenyu Li∗, Gaogang Xie†
∗Institute of Computing Technology, Chinese Academy of Sciences, China
†Computer Network Information Center, Chinese Academy of Sciences, China

‡University of Chinese Academy of Sciences, China §Tsinghua University ¶Peng Cheng Laboratory, ShenZhen, China

Abstract—RDMA over Converged Ethernet (RoCEv2) employs
Priority-based Flow Control (PFC) for a lossless fabric to
maintain high performance. However, PFC can cause Deadlocks,
which pauses traffic and potentially leads to severe exceptions for
applications. Existing solutions solve deadlocks at a considerable
cost, resulting in degradation of end-to-end network performance.

We present Roundabout, a data plane scheme designed to
detect and resolve deadlocks with minimal side effects. We first
analyze how switches in different states contribute to deadlocks.
Based on the analysis, we design an election-based distributed
detection scheme that efficiently and robustly identifies deadlocks.
By exploiting buffer configuration redundancy, we develop an in-
network collaborative packet scheduling scheme that forwards
deadlocked packets to their destinations in a lossless manner,
facilitating natural deadlock resolution. Additionally, we imple-
ment a barrier mechanism to ensure in-order packet delivery to
the receiver. Both analysis and experiments demonstrate that
Roundabout effectively detects and resolves deadlocks while
minimizing side effects to the network, making it an ideal
enhancement for PFC switches.

I. INTRODUCTION

Remote Direct Memory Access (RDMA) has become the
de-facto standard for high-speed networks in modern data
centers due to its high throughput, low latency and low
CPU overhead. RoCEv2 (RDMA over Converged Ethernet
Version 2), a major branch of RDMA1, has been deployed
at scale [1–3] and is actively embraced by a wide range of
applications, such as storage [3, 4], computing [5], distributed
transactions [6], and large-scale AI training [7].

RoCEv2 maintains a lossless network fabric by employing
Priority-based Flow Control (PFC) [1, 8]: when an ingress
queue grows and exceeds a threshold Xoff , a PAUSE frame is
sent upstream to stop the packet transmission, and a headroom
buffer is used to absorb the in-flight packets; after the queue
drains below another threshold Xon, a RESUME frame is
sent upstream to continue packet transmission. Various modern
congestion control schemes leverage PFC as the last line of
defense against packet loss [1, 9].

However, PFC inherently introduces deadlocks, a phe-
nomenon of cyclic buffer dependency (CBD), where all
switches within a cycle pause the packet transmission of their

Chengjun Jia is now at Huawei Technologies.
1We use RoCE and RoCEv2 interchangeably in this paper.

upstream switch port, while their own packet transmission
are also paused by their downstream switches [1]. Packets
trapped in the deadlock loop are paused constantly, severely
impacting network performance and availability [3]. Switches
in deadlock can also flood PAUSE frames to other innocent
links and devices, potentially affecting the entire network.
Modern data centers widely adopt the Clos topology (e.g., fat-
tree) [1, 3, 4, 10]. In general, deadlocks are rare in Clos, until
some less common events (e.g., link failure or port down/flap)
happen and incur loops (see details in §VIII). Meanwhile,
some other topologies are more prone to deadlocks [11].
As networks scale rapidly [12], the frequency of deadlock
occurrences may increase.

To this end, extensive research efforts have focused on PFC
deadlocks [13–20], which can be broadly classified into two
categories: proactive deadlock avoidance and reactive deadlock
detection/resolution. Deadlock avoidance strategies aim to
break the essential conditions of deadlocks to prevent their
occurrence in advance. However, they are often tightly coupled
with specific network topologies [21], routing algorithms [14],
or traffic patterns [18], limiting their flexibility. In contrast,
detection and resolution schemes relax these constraints, al-
lowing deadlocks to occur. As a result, they need to detect and
solve deadlocks with high accuracy and efficiency to minimize
their impact on network performance.

Existing deadlock detection/resolution schemes have their
drawbacks (detailed in §II-B): (i) For detection, control-plane
based methods [19, 22] can not fully meet the performance
requirements and may introduce false positives. Recent data-
plane solutions [20] may fail when multiple switches trigger
one deadlock cooperatively. (ii) For resolution, adaptive rout-
ing [20] can interfere with other parts of the network; buffer
reconfiguration [19, 20] encounters failure when there’s no
enough free shared buffer. Moreover, since RoCEv2 uses “go-
back-N” to retransmit dropped or out-of-order packets [23],
schemes that may lead to retransmission (such as switch reset
or reconfiguration, packet drop [20] and adaptive routing [19])
will cause performance degradation.

We aim to develop an efficient deadlock detection-resolution
scheme with minimal side effects to avoid these issues. The
scheme should be independent of network topologies, routing
algorithms, or congestion control mechanisms. It should effec-
tively identify deadlocks during their intricate formation and979-8-3503-5171-2/24/$31.00 ©2024 IEEE

S1 S3

S2
Queue 2

Q2
Q1
Q2

DestFlow Queue 1

Xoff

Queue 2

Q1
Q2
Q2

DestFlow Queue 1

Xoff

Queue 2

Q2
Q2
Q1

DestFlow Queue 1

Xoff
Switch 1 Switch 2 Switch 3

(a) Deadlock topology. (b) An expanded view of the deadlock topology. Ingress is not shown here.

S1 S2 S3
S2 S3 S1
S3 S1 S2

Fig. 1: All packets trapped in the loop have their own exit port (queue). Gray arrow indicates the deadlock loop.

resolve them with minimal effect on innocent flows, ports,
or queues. it should also preserve packet order for flows to
prevent unnecessary retransmissions in RoCE environments.
This is motivated by two key insights.

Our first key insight is that for a packet already stalled
in a deadlock loop, it only seeks to traverse along its in-
loop forwarding path to find its exit switch where it can
be forwarded off the loop via the corresponding exit port
(queue), just as they are traversing a Roundabout. Fig. 1 shows
an example. Packets in yellow should leave the loop from
switch 3, queue 1. If packets can be scheduled to their exit
ports in a lossless manner, queue length can be reduced and
the deadlock is resolved.

Our second key insight is that, headroom buffer is typically
configured larger than its theoretical value, which can be better
utilized to resolve deadlocks. Although headroom size can
be theoretically calculated [24–26], obtaining the necessary
metrics can be more complex (§II-A). For example, metrics
like interface delay and high-level delays are vendor and
implementation dependent [27]. Therefore, headroom size is
typically configured slightly larger to accommodate “plug-
and-play” functionality, as is the default settings provided by
manufacturers [27]. The redundant buffer space is unused in
most cases, which can be used for better deadlock resolution.

While our insights are straightforward, leveraging them to
solve deadlocks is still challenging. First, deadlock detection
algorithms must contend with the frequent state transitions in
switches during deadlock formation (detailed in §III). Second,
robust deadlock resolution necessitates efficient management
and scheduling of switch buffers, which calls for well-designed
buffer collaboration mechanisms. Third, the inherent absence
of packet order records in switches must be addressed so that
packets can be scheduled to their destinations in the correct
order, without retransmission.

In this paper, we propose Roundabout, a novel and effi-
cient data plane solution that detects and resolves deadlocks
with minimal side-effects. Roundabout is compatible with
any topologies, routing schemes and flow control algorithms,
and it operates entirely in the data plane at line rate. In
deadlock detection phase, (i) we classify switches forming
a deadlock into three states, and design an election-based
distributed detection scheme triggered bu PAUSE events. By
continuously monitoring deadlock signals from local queues
and downstream switches and maintain the more advantageous
results, A switch is able to closely monitor the transient
state of in-loop ports, facilitating swift and accurate deadlock
detection (§III). In deadlock resolution phase, (ii) we leverage
the idea of buffer collaboration, both between and within

switches, to break the logical boundaries of switch buffers
and effectively schedule packets towards their exit ports (§IV).
This process only utilizes the links that are already deadlocked,
therefore does not affect the rest of the network. Moreover,
it does not require buffer reconfiguration, avoiding possible
interference with queued packets. (iii) We also design a novel
barrier mechanism to isolate packets originated from different
deadlocked switches and propose a scheduling scheme to
ensure packets exit the loop through the correct port (§IV-D).

We experimentally demonstrate the overall effect of Round-
about and compare it with other state-of-the-art solutions.
The results show that Roundabout outperforms other schemes
across multiple metrics, and is suitable to serve as a functional
building block to enhance PFC-supported switches (§VI).

II. BACKGROUND

A. Dynamic Thresholds Switches for RoCE

(b) Switch with Headroom

Ingress queue 1

Ingress queue 2

Egress queue 1

Egress queue 2

CrossbarXoff Xon

Hdrm Shared Gmin

PAUSE

(a) Switch without Headroom

Ingress queue 1

Ingress queue 2

Egress queue 1

Egress queue 2

Crossbar

Shared Gmin

(b) Switch with Headroom

Ingress queue 1

Ingress queue 2

Egress queue 1

Egress queue 2

CrossbarXoff Xon

Hdrm Shared Gmin

PAUSE

Fig. 2: A Dynamic Threshold (DT) switch supporting RoCE. Buffer
in yellow is shared among ports and queues.

As shown in Fig. 2, for PFC-enabled switches, ingress
queue typically consists of three parts. First, each queue has
a dedicated buffer (Guaranteed Minimum, Gmin) to prevent
starvation. Then, a Shared buffer is dynamically allocated
from the global shared buffer with algorithm such as Dynamic
Thresholds (DT) [28–31]. Finally, a headroom buffer (Hdrm)
is reserved to absorb in-flight packets that arrive after PFC
PAUSE is asserted. Physically, the “Ingress queue” is essen-
tially a Virtual Statistics Queue (VSQ) maintained by a set
of counters [29, 32, 33], which record the occupancy for each
part of the queue. Buffer management algorithms rely on these
counters for their operation.

Upon packets arrival, they attempt to be admitted to Gmin,
then to Shared. If they both fail and trigger PFC PAUSE,
packets are then absorbed by Hdrm. Headroom should at
least be able to absorb: (i) maximum packet size (9kB for
jumbo frames), (ii) bit rate×round-trip latency (2x BDP),
and (iii) bit rate×internal latencies within the switch. Head-
room buffer size is additionally infected by the transmission
speed of bits across diverse wires, transceiver latency, inter-
nal implementation-dependent response time, cell size, buffer
management strategy, etc. [24, 29], making it hard to obtain

the headroom size precisely. In practice, headroom buffer is
configured to be larger than its theoretical value (e.g., default
value) to prevent possible accidental packet losses [25, 26, 29],
which results in waste of buffer. These buffer should be
utilized more efficiently, but few have explored it.

B. Causes of Deadlocks and Limitations of Existing Solutions

Studies have revealed many causes of deadlock, includ-
ing infrastructure and configuration issues such as hardware
failures, software bugs, misconfigurations and network up-
dates [34–36]. Deadlocks can also stem from traffic forming
transient loops [17], which may occur more frequently under
bursty and concurrent scenarios, such as the “All-to-All” or
“ring All-reduce” traffic [37] in distributed machine learning
when hosts perform data synchronization. In DT switches,
another reason for a queue to exceed its Xoff threshold (a
prerequisite condition of deadlock) is the inability for Shared
to obtain sufficient space from the global shared buffer.

A common method for deadlock detection is to periodically
probe port states and assert deadlock by checking for Circular
Buffer Dependency (CBD) in the control-plane [19, 22].
However, performing quick deadlock detection is challenging
due to the inherent latency between the control plane and data
plane. Moreover, since CBD is a loose condition for deadlocks,
asserting deadlocks by checking for the presence of CBD
may incorrectly assert a deadlock that doesn’t actually exist
(false positive) [17]. Recent work [20] shows the performance
advantage of detecting deadlocks in the data-plane. When a
switch initiates a pause frame (and becomes an initiator), a
probing message is piggybacked and is sent along the loop
to check the ingress queue length of each switch it passes
through. If they all exceed their Xoff thresholds, a deadlock
is identified. However, as shown in Fig. 3, when multiple
initiators jointly trigger a deadlock (which is common), the
probing message will be dropped by other initiators, which
makes this procedure not robust.

Once a deadlock is detected, it is typically resolved by
packet drop [20], adaptive routing or buffer reconfigura-
tion [19, 20]. However, these methods have drawbacks. Re-
setting links and ports can drop packets in the loop, which is
disruptive and inelegant. A recent scheme prioritizes dropping
packets from elephant flow, which mitigates the impact of
packet loss but does not completely eliminate it. Adaptive
routing does not cause packet loss, but it interferes with other
innocent traffic by forwarding packets to other links. Dynamic
buffer reconfiguration still needs help from control-plane and
may lead to packet drops in the chip buffer. It not only
occupies buffer space that could be utilized by other queues but
often fails to allocate enough space from the shared buffer as
well. Furthermore, RoCE uses “Go-Back-N” retransmission,
which is sensitive to dropped or out-of-order packets. None
of these methods can preserve packet order, leading to degra-
dation in network performance. Although Infiniband [38] and
some certain NICs [39] support out-of-order packet delivery,
it is impractical to assume such capability in RoCE-based
datacenters composed of heterogeneous NICs [40].

S1 S3

S2
Queue 2

Q2
Q1
Q2

DestFlow Queue 1

Xoff

Queue 2

Q1
Q2
Q2

DestFlow Queue 1

Xoff

Queue 2

Q2
Q2
Q1

DestFlow Queue 1

Xoff
Switch 1 Switch 2 Switch 3

(a) Deadlock topology. (b) An expanded view of the deadlock topology. Ingress is not shown here.

S1 S2 S3
S2 S3 S1
S3 S1 S2

S4 S3

S1

S1 S2 S3
S2 S3 S1
S3 S1 S2

S2
checking message from switch S2

checking message from switch S4

initiator switch

non-initiator switch

I

NII

NI I

I

NI

Fig. 3: Simple back-propagation cannot detect deadlock robustly.

III. DISTRIBUTED DEADLOCK DETECTION

As we can see in §II-B and Fig. 3, detection triggered by
PAUSE events has to handle transient and complex loop states.

Insight. Switches forming a deadlock loop can be classified
into three categories, based on the status of their relevant
ports and queues. Triggers are the switches that actively bring
new PAUSE signals to the loop. They pause their upstream
switches due to incast traffic or PAUSE frames from outside
the loop, etc. Spreaders are the switches paused by other in-
loop switches. They may propagate pause signals upstream in
the loop as their queues build up. Non-pauses are the switches
that currently do not receive or generate in-loop pauses. In a
loop of N switches forming a deadlock, there could be 3N

possible loop states at any given time.
Relying on simple back propagation to detect deadlocks can

be insufficient in many cases. For instance, each switch in the
loop may independently trigger PFC and pause its upstream
switch during deadlock formation, consequently interrupting
the existing detecting process; during the formation of a
deadlock, switches may transition between three states due
to buffer changes, which might interrupt the propagation of
probing messages; when a switch transition to non-pause state,
their probing message becomes outdated, etc.

Core idea. Deadlock detection in the data plane can be viewed
as a consensus problem. Our objective is to identify deadlocks
based on the status of switches within a loop and achieve
consensus across them. To this end, we propose an election-
based distributed detection scheme, which performs on-the-
fly election at each hop. Probing messages are carried in PFC
frames. When a switch generates a new probing message or
receives a probing message from another switch, it performs
an election to select the more advantageous message and
caches it locally. When a switch’s status changes, it promptly
notifies the affected switches to ensure continuous and accurate
tracking of the loop’s status. By adhering to the uniform
election rule, switches in the loop can ultimately converge on
a consistent detection result.

A. Definitions of Data Structure and Packet Format

We define probing message as a triplet T = {sid, qid,
rand}. Here, sid and qid are the global switch ID and
queue ID within the switch respectively, uniquely identifying
the source of a probing message. The 32-bit rand is ran-
domly generated for comparing the priorities between probing
messages. For each ingress queue, we instantiate two triplet
registers: Tinit and Tcurr, along with two 1-bit flags to indicate
their validity. Tinit records the inherent probing message:
when a queue actively triggers PAUSE and generates probing
message, Tinit is initialized and marked valid; when the queue

sid qid
rand/credit

opcode varLen nodeId1
nodeId2

0 1516 31

Fig. 4: ra hdr format. rand and credit used in seperated operations
shares a 32-bit field to reduce header length.

opcode packet character
/ operations opcode packet character

/ operations

1 deadlock detection 2 Tcurr invalidation
3 deadlock announcement 4 accumulate routing info
5 build Roundabout routing table 6 carrying credits
7 barrier packet 8 checking message

TABLE I: opcode and the corresponding actions.

triggers RESUME, Tinit is invalidated. Tcurr, on the other
hand, is used for tracking loop state changes by caching the
most advantageous probing message it observes.

As shown in Fig. 4, Roundabout header (abbreviated as
ra hdr) is designed to convey messages between switches.
Switches generate and piggyback ra hdr when trigger-
ing PFC pause/resume frames, which are referred to as
ra pause/ra resume frames. PFC frames with ra hdr used
for deadlock detection are called probing packets. Note that
ra hdr also contains several other fields in addition to the
triplet. These are utilized for different operations throughout
the whole deadlock detection and resolution process, which
we demonstrate later. Switches parse the opcode and act
correspondingly. We summarize the value of opcode field and
their behaviors in table I.

To track deadlock dependency between ingress and egress
within a switch, we adopt a data structure similar to the
approach in [20]. Specifically, each lossless egress queue
maintains a bitmap of length equal to the number of ports
N , indicating whether an egress queue contains packets from
a specific ingress port. The bitmap is indexed by port ID and
updated based on queue statistics and packet size. By querying
the bitmap, an egress queue can identify its causal ingress
port(s) for deadlock detection.

B. Election based Deadlock Detection

We first introduce the election rule, the fundamental part of
data plane deadlock detection. The core idea is that switches
should maintain the most advantageous and up-to-date factors
that could lead to deadlocks, which enables distributed dead-
lock detection to converge on a latest and consistent result.

Election Rule. When a switch observes a probing message
(either generated by its own queue exceeding Xoff threshold,
or received from another switch), it performs an election and
updates the locally cached message. Algorithm 1 (line 3−7)
demonstrates three election rules. (i) Probing message with
smaller rand is considered more advantageous (line 7); (ii)
if a queue triggers multiple probes over time, the latest one
is effective (line 4); (iii) if no valid probing message was
observed previously, the observed message is elected directly.

Detection Scheme. To address detection failures caused by
changes in switch states, we design a distributed deadlock

Algorithm 1: Functions at Ingress.
1 // Tinit and Tcurr are registers at ingress queue.
2 // Egress parse the triplet T carried in probing packets and

synchronize with functions at its casualty ingress queue(s).
3 function Elect(T1, T2)
4 if T1.{sid, qid} = T2.{sid, qid} or T2 is not Valid then
5 return T1;

6 else
7 return T1.rand < T2.rand ? T1 : T2;

8 function SendPause()
9 InitAndSetValid (Tinit);

10 Tcurr ← Elect(Tinit, Tcurr);
11 SetValid (Tcurr);
12 SendPauseWithTuple (Tcurr);

13 function SendResume()
14 SendResumeWithTuple (Tcurr);
15 SetInvalid (Tinit);
16 SetInvalid (Tcurr);

17 function PeerGetPause(T)
18 if Tinit is Valid and Tinit = T then
19 deadlock detected;

20 else
21 if Tinit is Valid and Tcurr is not Valid then
22 Tcurr ← Elect(T, Tinit);

23 else
24 if Tcurr = T then
25 return;

26 Tcurr ← Elect(T, Tcurr);

27 SetValid (Tcurr);
28 if self pauses upstream then
29 SendPauseWithTuple (Tcurr);

30 function PeerGetResume(T)
31 if self pauses upstream and Tcurr.{sid, qid} = T.{sid, qid}

then
32 SetInvalid (Tcurr);
33 SendInvalidWithTuple (T);
34 Tcurr ← Tinit;
35 SetValid (Tcurr);
36 SendPauseWithTuple (Tinit);

37 function PeerGetInvalid(T)
38 if T = Tcurr and Tcurr is Valid then
39 SetInvalid (Tcurr);
40 SendInvalidWithTuple (T);

detection algorithm. The core idea is that when a switch
transitions between the three states, its impact on neighboring
switches changes. These changes must be accurately conveyed
to other switches in the loop, ensuring that switches in the loop
correctly maintain the latest deadlock state. The actions at each
switch’s ingress queue are summarized in Algorithm 1:
• When a switch becomes a trigger or spreader and sends a

pause frame, it contributes to the deadlock and must inform
its upstream of this impact with an ra pause frame with
opcode = 1. Before this, spreaders should run an election
to update the most advantageous impact (line 8-12).

• When a switch triggers resume (become a non-pause), it
no longer contributes to deadlock formation. Therefore,
it invalidates its record and removes its impact on its
upstream switches hop by hop with an opcode = 2 ra

4, 1, 5
4, 1, 5

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 2

4, 1, 5
1, 1, 2

4, 1, 5

2, 1, 8
2, 1, 8

1, 1, 2

4, 1, 5
1, 1, 2

1, 1, 2

2, 1, 8
2, 1, 8

4, 1, 5
1, 1, 2

3, 1, 2
1, 1, 2

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 5
4, 1, 5

3, 1, 2
1, 1, 2

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
4, 1, 5

3, 1, 2
3, 1, 2

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
4, 1, 5

3, 1, 2
3, 1, 2

2, 1, 8
3, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
4, 1, 5

3, 1, 2
3, 1, 2

2, 1, 8
3, 1, 2

1, 1, 7
3, 1, 2

t0 t1 t2 t3 t4 t5 t6 t7

1, 1, 2
1, 1, 2

4, 1, 5
3, 1, 2

3, 1, 2
3, 1, 2

2, 1, 8
3, 1, 2

1, 1, 7
3, 1, 2

t8

4, 1, 5
3, 1, 2

3, 1, 2
3, 1, 2

2, 1, 8
3, 1, 2

1, 1, 7
3, 1, 2

t9

S4

S2

S3

S1

de
te

ct
 d

ir
ec

tio
n

p1

p2

p1

p2

p1

p2

p1

p2

time spanning

Tinit
Tcurr

S1 trigger RESUME;

Elect(T, Tcurr);

Elect(T, Tinit);

coordinator: S3

S1 trigger PAUSE again;
set Tcurr=Tinit & send pause;

invalidate Tcurr;

valid

invalid

invalidate Tcurr;

invalidation stop;

Fig. 5: A concrete example of detecting actions in a 4-switch deadlock. Each cell group represents the register state of corresponding ingress
queue (at port p1). The upper and lower half denotes Tinit and Tcurr respectively. Arrows indicate the interactions between switches.

frame. (line 13-16, 30-36).
• When a switch observes a new probing message (at “peer”

egress), it queries the bitmap and invokes the action at
its casualty ingress queues. It first updates the impact
it observes with an election. Then, it notices upstream
switches of the impact (line 21-29).

• Switch monitors whether it receives a probing message
from itself. If a probing message is received with matching
triplets, it indicates a deadlock (line 18-19).

Example. Fig. 5 shows a concrete example of the distributed
deadlock detection process. At t0, switches S1, S2, and S4
become triggers simultaneously, although the deadlock has not
yet fully formed. S3 becomes a spreader, and S1 becomes a
non-pause at t2 (possibly due to a decrease in shared buffer
occupancy, etc.). Elections are performed at different times on
different switches. Eventually, switch S3 receives a probing
message that originated from itself, indicating a deadlock.

Coordinator. When a switch receives a PAUSE frame with
a valid probing message from itself, it becomes a coordinator
to act as a controller to lead the subsequent deadlock resolu-
tion process. It sends an announcement packet upstream, (an
ra pause frame with opcode = 3 and carries its Tinit). This
will notify other switches in the loop of the deadlock. External
packets are not able to enter the loop when deadlock occurs.

IV. DEADLOCK RESOLUTION

Deadlock resolution is based on a simple observation: Pack-
ets trapped in a deadlock loop attempt to exit the loop from
their downstream exit switches, following existing routing
rules. This is also the expected behavior when no deadlock
occurs. If we can enable this behavior even in deadlock
scenarios, queue length can be reduced and the deadlock is
resolved. The key is to identify available buffer space to
resume the flow, allowing stalled packets to continue toward
their destination automatically.

Insight. We observed that the headroom is typically config-
ured bigger than its theoretical value, which reveals a new
opportunity: by fully leveraging the excess headroom buffer
(§II-A) in deadlocked switches, deadlocks can be resolved
without buffer reconfiguration. This also brings a significant
benefit: we don’t need to recalculate new paths for packets

S1 S3

S2
Queue 2

Q2
Q1
Q2

DestFlow Queue 1

Xoff

Queue 2

Q1
Q2
Q2

DestFlow Queue 1

Xoff

Queue 2

Q2
Q2
Q1

DestFlow Queue 1

Xoff

Switch 1 Switch 2 Switch 3

(a) Deadlock topology. (b) All packets trapped in the loop have their own Exit Queue.

S1

S3

S2

S4

S1

S3

S2

S4

Header 1

Header 4

Header 3

Header 2

1

4

3

1

4 1

Header 1

Header 2

Header 3

Header 4

3

4

1

1

4 1

2 3 4 1

Header 1

H
dr

1

Hdr 2 3 4 1

Hdr 4 1

H
dr3

4
1

Hdr 1 2 3 4 1

H
dr2

3
4

1

Hdr 3 4 1

H
dr

4
1

(a) Accumulate routing info (b) Build deadlock routing table

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 5
4, 1, 5

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 2

4, 1, 5
1, 1, 2

4, 1, 5

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 5
1, 1, 2

1, 1, 2

2, 1, 8
2, 1, 8

4, 1, 5
1, 1, 2

3, 1, 2
1, 1, 2

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 2

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Elect({1,1,2}, {1,1,7});

Coordinator S1 Elected

S3 Trigger PAUSE, and

sid qid
rand/credit

pid

Stage Len nodeId1
nodeId2

0 1516 31

Tinit is the latest

S1

S3

S2

S4 S5

1

Port1

Port2

Port3

Port4

2
3

4

5

6789

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 3
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 4

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

4, 1, 3
4, 1, 3

3, 1, 4
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
4, 1, 3

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Coordinator S1 Elected

S3 Trigger PAUSE, and

Tinit is the latest

(a) Accumulate routing info

S1 S3

S2
Queue 2

Q2
Q1
Q2

DestFlow Queue 1

Xoff

Queue 2

Q1
Q2
Q2

DestFlow Queue 1

Xoff

Queue 2

Q2
Q2
Q1

DestFlow Queue 1

Xoff

Switch 1 Switch 2 Switch 3

(a) Deadlock topology. (b) All packets trapped in the loop have their own Exit Queue.

S1

S3

S2

S4

S1

S3

S2

S4

Header 1

Header 4

Header 3

Header 2

1

4

3

1

4 1

Header 1

Header 2

Header 3

Header 4

3

4

1

1

4 1

2 3 4 1

Header 1

H
dr

1

Hdr 2 3 4 1

Hdr 4 1

H
dr3

4
1

Hdr 1 2 3 4 1

H
dr2

3
4

1

Hdr 3 4 1

H
dr

4
1

(a) Accumulate routing info (b) Build deadlock routing table

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 5
4, 1, 5

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 2

4, 1, 5
1, 1, 2

4, 1, 5

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 5
1, 1, 2

1, 1, 2

2, 1, 8
2, 1, 8

4, 1, 5
1, 1, 2

3, 1, 2
1, 1, 2

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 2

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Elect({1,1,2}, {1,1,7});

Coordinator S1 Elected

S3 Trigger PAUSE, and

sid qid
rand/credit

pid

Stage Len nodeId1
nodeId2

0 1516 31

Tinit is the latest

S1

S3

S2

S4 S5

1

Port1

Port2

Port3

Port4

2
3

4

5

6789

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 3
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 4

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

4, 1, 3
4, 1, 3

3, 1, 4
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
4, 1, 3

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Coordinator S1 Elected

S3 Trigger PAUSE, and

Tinit is the latest

(b) build in-loop routing rules

Fig. 6: Roundabout routing table build-up in the data-plane. The
circular arrow represents flow directions.

during deadlocks, thus saving time and minimizing disruptions
to innocent flows on other links.

A. In-deadlock Routing

To resume packet transmission from a deadlocked state,
we should first identify the topology of the deadlock loop.
Specifically, since an egress queue in the loop may have
multiple associated ingress queues, it’s crucial to pinpoint
the one that is also within the loop. This ensures that the
scheduling for deadlock resolution is restricted to the queues
within the loop.

Inspired by In-Network Telemetry, we propose a scheme
that collects routing information of deadlock paths and notifies
the deadlocked switches of their respective ingress and egress
ports within the loop. As shown in Fig. 4, variable-length
nodeId fields are appended to the end of the ra hdr, with its
length recorded in varLen field. There are two consecutive
steps for each deadlocked switch to obtain routing information:

Routing information accumulation. As shown in Fig. 6a,
once the coordinator (e.g., S1) is elected, it sends a Round-
about packet with opcode = 4, reversing the flow direction.
Upon receiving this packet, each switch inserts its global ID
after the varLen field and relay the packet through its paused
causal ingress ports. This process continues until the packet
loops back to the coordinator, indicating that the information
needed for building the routing table has been collected.

Roundabout routing table buildup. As shown in Fig. 6b,
when the coordinator receives the Roundabout packet it orig-
inated, it modifies the opcode field to 5, inserts its Global
ID again, and forwards the packet along of the deadlock
loop with a different priority. Other switches in the loop

Egress Queue Ingress Queue

Hdrm
Monitor

Downstream (Ingress)Upstream (Egress)

Packet
Scheduler

Packet Transfer

Registers Hdrm Unused

Hdrm Granting

Ingress Queue

Key Dest

Fig. 7: Buffer collaborates between switches.

identify their in-loop ingress and egress ports by parsing
nodeId1 and nodeId3 fields and then querying SwitchID-Port
table which is pre-configured during network buildup. These
switches then removes the nodeId1 field, and forwards the
packet downstream through their in-loop egress ports. When
the coordinator finally get the packet, it also identifies its in-
loop ingress port by parsing the nodeId1 field.

Simplicity. While the packet is variable-length from a global
perspective, each switch only need to handle a specific por-
tion of the packet, as the parsing, insertion, and deletion
of nodeIds are all performed at the fixed position within
the Roundabout packet. This conserves Packet Header Vector
(PHV) resources and simplifies the implementation.

B. Buffer Collaboration between Switches

We leverage the redundant headroom to resume packet
transmission in a lossless manner. To achieve this, the available
headroom space of a deadlocked ingress queue need to be
granted to its upstream egress queue, allowing packets to be
pulled from upstream in a producer-consumer pattern.

As shown in Fig. 7, once the Roundabout routing table is
built, a hdrm monitor at the downstream switch sends a credit
packet [41] (a Roundabout packet with opcode = 6) to its
upstream, carrying the available headroom size in its credit
field. A credit register at the upstream is initialized to 0. The
packet scheduler increments the credit register by the value
parsed from credit packets. When a packet is dequeued, the
credit register is decremented by the packet size. Packets are
sent downstream whenever the credit register value ≥ MTU,
which will not cause packet drop. Roundabout only requires
1 MTU of extra buffer per port at minimum, which can be
easily satisfied under default settings [27]).

For a deadlocked switch, as packets are dequeued and
sent downstream, the corresponding ingress queue is drained,
increasing its available headroom. This prompts its upstream
switch to receive additional credits, which facilitates the trans-
mission of packets in the deadlock.

It is important to note that when a packet is sent down-
stream, it follows the origin routing table to determine its
next hop. The packet escapes the deadlock if its next hop is
not a switch in the loop, which leads to a reduction in queue
length. All packets will eventually escape the loop in this way.
However, this also requires buffer coordination within each
switch, as described below.

C. Buffer Collaboration within Switch

Due to the buffer management strategies of dynamic thresh-
old switches, in-loop packet scheduling described in §IV-B can

z

Ingress queue 1

Ingress queue 2

Egress queue 1

Egress queue 2
EQ1
EQ2

EQ1

EQ2

DestFlow

Fig. 8: A case of false full. Gray arrow indicates a part of deadlock.

fail. As shown in Fig. 8, ingress and egress queue 1 is in a
deadlock loop. However, packets at the head of egress queue 1
come from ingress queue 2. When egress queue 1 dequeues a
packet, the headroom occupancy of ingress queue 2 decreases,
while ingress queue 1’s headroom size remains unchanged,
thus cannot make room for further packet scheduling. The
root cause is that ingress queue 1 and queue 2 do not share
the headroom, so the newly released buffer cannot be utilized
by ingress queue 1, which we refer to as false full.

Roundabout leverages the property of virtual statistics
queue (§II-A) to tackle this problem. We adjust the buffer
auditing scheme with a slight modification to coordinate
buffer usage among queues and ensure that the actual queued
packets are unaffected. When an egress queue transmits a
packet received from an out-of-loop ingress queue, the packet
size is first deducted from the shared buffer and then from
the headroom, ensuring that the in-loop ingress queue can
actively obtain more space from the shared buffer. This minor
adjustment guarantees sufficient buffer space within the loop
by efficiently utilizing idle buffers, ensuring continuous buffer
collaboration between switches until deadlock is resolved.

Note that this modification is only active during deadlock
resolution, which does not impact the behavior of switches
when there is no deadlock.

D. In-order Packet Delivery

Roundabout is designed for in-order packet delivery to
receivers across various network topologies and routing rules.
This relies on a simple observation: a flow’s routing path may
have one or more segments overlapping with the deadlock.
For example, in Fig. 9, the yellow flow has only one segment
(S1→S2→S3→S4) while the green flow has two segments
(S1→S2 and S3→S4). If packets of a flow on each segment
can be forwarded following their original routing rules and
exit the loop through their nearest exit switch, packet order
can be maintained.

With the methods we proposed above, packets can resume
flowing within the loop and exit the deadlock. However,
situation can become intricate when a flow enters and leaves
the loop multiple times. For instance, in Fig. 9, the green flow
has two exit ports on the loop: Port1 and Port2. Packets 3-5
are naturally blocked and cannot enter S3 when the deadlock
occurs. If packets from S2 keeps arriving at S5, they will
eventually saturate the ingress queue at S5, causing Port1 to
be paused as well. Consequently, packet 6 of the green flow
cannot be forwarded to Port1 (its nearest exit port). To ensure
the scheduling of other flows, Roundabout necessitates rotating
packets along the loop following Roundabout routing table, so
packet 6 will eventually exit the loop through Port2. Packets
3-5 resume transmission only after the deadlock is solved. This

S1 S3

S2
Queue 2

Q2
Q1
Q2

DestFlow Queue 1

Xoff

Queue 2

Q1
Q2
Q2

DestFlow Queue 1

Xoff

Queue 2

Q2
Q2
Q1

DestFlow Queue 1

Xoff

Switch 1 Switch 2 Switch 3

(a) Deadlock topology. (b) All packets trapped in the loop have their own Exit Queue.

S1

S3

S2

S4

S1

S3

S2

S4

Header 1

Header 4

Header 3

Header 2

1

4

3

1

4 1

Header 1

Header 2

Header 3

Header 4

3

4

1

1

4 1

2 3 4 1

Header 1

H
dr

1

Hdr 2 3 4 1

Hdr 4 1

H
dr3

4
1

Hdr 1 2 3 4 1

H
dr2

3
4

1

Hdr 3 4 1

H
dr

4
1

(a) Accumulate routing info (b) Build deadlock routing table

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 5
4, 1, 5

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 2

4, 1, 5
1, 1, 2

4, 1, 5

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 5
1, 1, 2

1, 1, 2

2, 1, 8
2, 1, 8

4, 1, 5
1, 1, 2

3, 1, 2
1, 1, 2

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 2

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 2

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 5
1, 1, 7

3, 1, 2
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Elect({1,1,2}, {1,1,7});

Coordinator S1 Elected

S3 Trigger PAUSE, and

sid qid
rand/credit

pid

Stage Len nodeId1
nodeId2

0 1516 31

Tinit is the latest

S1

S3

S2

S4 S5

1

Port1

Port2

Port3

Port4

2
3

4

5

6677

S4

S2

S3

S1

F
low

 D
irection

Detect Direction Time Spanning

p1

p2

p1

p2

p1

p2

p1

p2

4, 1, 3
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 2
1, 1, 4

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

2, 1, 8

4, 1, 3
4, 1, 3

4, 1, 3

2, 1, 8
2, 1, 8

4, 1, 3
4, 1, 3

3, 1, 4
4, 1, 3

2, 1, 8
2, 1, 8

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
4, 1, 3

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
4, 1, 3

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

4, 1, 3
1, 1, 7

3, 1, 4
1, 1, 7

2, 1, 8
1, 1, 7

1, 1, 7
1, 1, 7

0 1 2 3 4 5 6 7
2, 1, 8

S1 Trigger RESUME

Tinit
Tcurr

Elect({3,1,2}, {1,1,2});

Elect({1,1,7}, {2,1,8});
S1 Trigger PAUSE again, and

S4 Elect({1,1,7}, {1,1,2});

Coordinator S1 Elected

S3 Trigger PAUSE, and

Tinit is the latest

3

4
5

2

Fig. 9: The green flow has 2 exit ports in the loop: Port1 and Port2.

is acceptable if we only want to break the deadlock, but it can
also break packet order.

We design a novel mechanism to keep packets in order.
Packets are only permitted to exit the loop through their
nearest exit ports. If they miss these ports, instead of been
forwarded out of loop from other exit ports, they are returned
to their original positions. In this way, we will not violate the
observation and packet order can be maintained.

First, packets that miss their nearest exit port are marked by
setting the reserved bit in the IP Type of Service (ToS) field
to 1 [42, 43], which does not introduce extra bits to inflate the
buffer. Packets with ToS=1 will be forwarded to their in-loop
downstream switches according to Roundabout routing table
and will eventually return to their starting switch.

Second, we need to ensure that these packets can stop
precisely at the switch where they were located when the
deadlock resolution began. We achieve this by introducing
barrier packets: After Roundabout routing table is built,
instead of transmitting data packets immediately, switch first
generates and sends a barrier packet, a Roundabout packet with
opcode = 7. It is used to isolate the data packets on different
switches, and can only be forwarded in the loop following
Roundabout routing rules. Barrier packet circulates along the
deadlock loop, followed by data packets from the same switch.
The packet scheduler module monitors every packet dequeued.
Once it identifies a packet as the barrier packet it generated, the
dequeue process is halted and the barrier packet is discarded.
This mechanism ensures that all packets missing their proper
exit ports can return to their originating switches.

When a barrier packet completes its trip in the loop, switch
will send a checking message round the loop to confirm
whether the deadlock is resolved. The checking message is a
Roundabout packet with opcode = 8 and the rand field set to
1. At each switch in the loop, if its barrier packet has returned
and queue length is below the XON threshold, the rand field
is set to 0. If the coordinator receives its checking message
with rand=0, it indicates that the deadlock has been resolved
and packets can re-enter the loop. Otherwise, the coordinator
can initiate another round of resolution until the deadlock is
solved, or fall back to other solutions.

V. TESTBED EXPERIMENTS

A. Implementation

We implemented a Roundabout switch prototype, as well
as the senders and receivers, on commodity x86 servers with
DPDK 19.08.2 [44]. Both the switches and sender/receiver
nodes are equipped with 10Gbps NICs. The testbed is built
with a topology and routing scheme identical to Fig. 1.

500 750 1000 1250 1500
Number of packets sent

0

500

1000

1500

2000

Se
q

nu
m

 a
t s

en
de

r

Rountabout SEQ
Roundabout ACK
Lossy SEQ
Lossy ACK

(a) Sequence number growth

500 750 1000 1250 1500
Packet TX count

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 g
oo

dp
ut

Rountabout
Lossy

(b) Normalized goodput

Fig. 10: Roundabout has minimum bandwidth waste.

The switch’s data plane consists of three modules: Receiving
module gets packets from multiple input ports for serial pro-
cessing and manages port pause states based on Roundabout
packets. Forwarding module implements the main function of
Roundabout, such as ra frame generation, local election, dead-
lock routing table buildup, ToS marking, admission control and
queue management. Transmitting module dequeues and sends
packets downstream through their corresponding egress ports
in a round-robin (RR) fashion.

B. Testbed Evaluation

Roundabout solves deadlocks with minimum impact
on end-to-end performance. Since deadlock formation is
determined by queue length rather than flow size, we let
senders transmit long flows that pass through three switches in
clockwise order before reaching the receiver. Receivers sends
per-packet ACKs back to the senders.

We compare Roundabout with selective packet drop [20],
and a sampling of packet sequence number is shown in
Fig. 10a. Compared to schemes that cause sequence number
gaps like packet drop, Roundabout is able to maintain in-
order packet delivery to avoid the large number of unnecessary
retransmissions caused by RoCE’s go-back-N transmission
scheme. Fig. 10b shows the normalized effective throughput
(goodput). Lossy deadlock resolution scheme results in a sig-
nificant decline in effective throughput, whereas Roundabout
maintains consistently high end-to-end performance.

VI. SIMULATION EVALUATION

A. Simulation Setup

We evaluate our design with network simulator NS3 [45].
We first use full mesh topology [46] from §VI-B to §VI-D

to demonstrate the micro behavior of Roundabout, with 16
shared buffer switches connected to each other. Each switch
has 4 servers connected. All links have a capacity of 100Gbps
and a propagation delay of 1us [2]. We disable flow control
on the server such that all traffic can be sent at 100Gbps2.
Unless explicitly specified, we use the following parameters
as default: Each switch has an SRAM buffer of 32MB, a
redundant headroom of 1 BDP, an in-loop hop count (the
number of hops from a packet entering the loop to it reaches its
exit port) of 3, a maximum shared portion (the maximum per-
centage of shared buffer that can be allocated to a single queue)

2We use full mesh topology and disable flow control to create more intuitive
and varied deadlocks (different deadlock loop length, trigger locations, number
of hops from exit ports, etc.), which is uncommon in practice.

 (a) Total queue len in a 4-switch deadlock. (b) Len of queues in a 4-trigger loop. (c) Len of queues in a 2-trigger loop. (d) Data rate at receivers.

deadlock

(e) PSN at receivers.

detection

forms

To
t.

qu
eu

e
le

n
(M

B
)

Q
ue

ue
 le

n
(M

B
)

R
X

 P
SN

resolution

1 # 2 # 3 # 4

Q
ue

ue
 le

n
(M

B
)

R
X

 ra
te

 (G
bp

s)

Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

Fig. 11: The behavior of Roundabout.

of 1/8. We utilize AI training workload measured in a real-
world testbed cluster. The neural network has multiple fully
connected layers and employs ring all-reduce to synchronize
gradients. Compared to web search [47] or incast [48] traffic,
this workload is more bursty and exhibits a higher degree of
concurrency [49], thus is more likely to cause deadlocks.

We also evaluate Roundabout under 2D-Torus [50] topolo-
gies in §VI-E. The 2D-Torus topology comprises 16 switches
organized in a 4×4 grid, with each switch connected to 4
servers. The switch configurations are identical to those in the
Full-Mesh topology. We used Ali-Storage workload [2], set the
average link load to 80% to simulate heavy traffic conditions,
and use DCQCN [51] as the congestion control algorithm.

B. Demonstration of Roundabout

We first present the behavior of Roundabout. We configure
the routing table for a loop of 4 switches. Flows enter the
loop from different switches, circulate in the same direction,
and leave the loop after three hops. Fig. 11a shows the sum
of the deadlock queue lengths on in-loop switches during two
complete deadlock formation-resolution processes. The queues
grows first, then triggers deadlock due to the frequent “on-
off” port behavior [52]. Roundabout is able to detect deadlock
within microseconds and then start deadlock resolution.

We then dive into the micro-behavior of deadlock detection.
Fig. 11b shows a scenario where four switches become triggers
nearly simultaneously, which takes only one hop’s time to
form a deadlock. Roundabout uses the following 3 hop’s
time for deadlock detection, and another 4 hop’s time to
synchronize the results with other switches. Fig. 11c shows
another scenario: two switches become triggers first, then
pause the other two switches as PFC pause frames propa-
gate. In this case, deadlock formation and detection finish
almost simultaneously. The “plateau region” in the curve is
much shorter, during which the deadlock detection results is
synchronized with other switches in the loop. Both cases in
Fig. 11b and Fig. 11c detect deadlock within 10 microseconds,
demonstrating the effectiveness of our scheme. Notably, for a
loop of length N, achieving global consensus and synchro-
nizing with all nodes requires 2N hops. The performance of
Roundabout follows a similar pattern.

Once deadlock is confirmed, Roundabout initiates deadlock
resolution. Packets are efficiently scheduled to exit the loop
in a lossless manner. We observe that one of the queues
experiences a rapid decrease in length and then returns to
normal. This is because buffer negotiation between switches is
triggered hop-by-hop. When the first switch has already sent a

significant number of packets downstream, its upstream switch
may still be waiting for buffer negotiation to be triggered.
Thus, the first switch will temporarily not receive any packets
until buffer collaboration starts across all switches, resulting
in a faster draining rate of the queue.

Roundabout efficiently supports end-to-end packet transmis-
sion. Fig. 11d reveals that since detection can be done quickly,
the time packets actually paused in the loop can be negligible.
As packets of a certain flow approach their exit port, packets of
other flows are gradually scheduled out of loop midway. This
increases the proportion of the given flow in the overall traffic,
resulting in a faster sending rate (even faster than before the
deadlock occurred). Fig. 11e is actually a scatter plot of the
sequence number of packets that arrives at the receiver over
time. It shows the order-preserving nature of Roundabout and
further corroborates the results from the testbed experiments.

C. Performance.

We evaluate the performance of Roundabout across various
configurations, including different loop lengths, headroom
sizes, in-loop hop counts, and maximum shared portions. We
vary one parameter once while keeping the others as default.

Fig. 12 reveal some important properties of Roundabout: a)
As the loop length increases, Roundabout spends more time
for detection, since it needs to circulate control messages over
the loop. However, loop length itself does not significantly
impact the speed of deadlock resolution. b) Deadlocks are
triggered more quickly as incast becomes more severe with
an increasing average in-loop hop count. This is due to the
introduction of additional flows on the same link, which dilutes
the target flows and reduces their sending rate. c) The size
of redundant headroom affects the initial speed of deadlock
resolution. However, as packets exit the loop, the available
headroom buffer gradually grows to its predefined limit and is
no longer a bottleneck, which does not significantly influence
the overall resolution time. d) The maximum available queue
length (related to the switch’s buffer size and memory manage-
ment policy) is a double-edged sword: a larger queue length
can accommodate more packets before triggering a deadlock,
but it also prolongs the overall resolution process.

D. Comparison with Other Solutions.

We compare Roundabout with four latest deadlock detection
and resolution methods. Loop Breaker (LB) and Deadlock
Breaker (DB) [19] are control-plane approaches that asserts
deadlocks by probing port states. (i) LB periodically sends
probe packets with unique identifiers from deadlock-suspected

4 86
(a) Loop length (hops)

0.0

0.5

1.0

Ti
m

e
(m

s)
Deadlock Formation Deadlock Resolution

2 3 4
(b) Average hops from exit switch

0.0

1.0

Ti
m

e
(m

s)

Deadlock Formation Deadlock Resolution

0.5BDP 1BDP 1.5BDP 2BDP
(c) Initial redundant headroom size

0.0

0.5

1.0

Ti
m

e
(m

s)

Deadlock Formation Deadlock Resolution

1/32 1/16 1/8 1/6 1/4
(d) Maximum buffer proportion available
0.0

1.0

2.0

Ti
m

e
(m

s)

Deadlock Formation Deadlock Resolution

Fig. 12: Roundabout’s performance under different metrics.

ports along the loop. Each node choose and record the smaller
identifier and pass it on, until the identifier returns to its
starting port. It resolves deadlocks by dynamically rerouting
deadlocked packets to other switches. (ii) DB detects dead-
locks similar to LB but carries full-path information in probing
packets. Upon detecting a deadlock, the control plane dynami-
cally adjusts the buffer to resume packet flow. (iii) ITSY [20] is
a dataplane scheme. It first identifies an initial trigger, and then
sends a checking message reversing the loop until it returns
to the trigger. It proposes packet dropping (lossy) and active
buffer adjustment (lossless) to resolve deadlocks.

Requirements LB DB ITSY
(lossy)

ITSY
(lossless) Roundabout

Quick Detection × × ✓ ✓ ✓
Adapt to Multiple Triggers ✓ ✓ × × ✓
Small Detection Overhead × × ✓ ✓ ✓

Keep Packets in Order × − × − ✓
No side-effects on Other Queues × × ✓ × ✓

Compatible with RoCEv2 × × × × ✓

TABLE II: Roundabout satisfies all the requirements.

Overall Effect. As shown in Table II, Roundabout outper-
forms other solutions across various metrics. As for deadlock
detection schemes, LB and DB exhibit inherent performance
issues and encounter significant detecting overhead. Although
ITSY can detect deadlock quickly, it faces challenge when
the loop status is complex and has multiple triggers. As for
deadlock resolution schemes, LB leverages adaptive routing
which may affect other traffic; DB and ITSY (lossless) dynam-
ically configure the buffer but may not succeed when shared
buffer space is constrained. None of the compared schemes
can guarantee in-order packet delivery. Roundabout is the only
solution that can satisfy all the listed metrics in table II, and
is therefore ideally suited for RoCEv2.

Detecting Speed. As shown in Fig. 13a, Roundabout sig-
nificantly outperforms LB and DB, which suffer from latency
between the control plane and data plane. Additionally, LB and
DB exhibit more variable detection latency, as deadlocks may
occur at any time between two periodical detections. Although
Roundabout and ITSY have similar detection speeds, Round-
about is able to effectively detects and resolves deadlocks
when multiple switches trigger the same deadlock.

(a) Relative Detection Time (log).

× × ×

Roundabout (1-trigger)
Roundabout (multi-trigger)

(a) Relative detection time
(b) BW Overhead of One Detection.

RoundaboutLB
DB ITSY

(b) BW overhead of one detection

Fig. 13: Roundabout compared with other schemes.

Bandwidth Overhead. Fig. 13b compares the additional
bandwidth consumption during a complete detecting process.
Roundabout and ITSY, triggered by PAUSE events, consume
minimal bandwidth. Roundabout also reuses header fields
to further optimize bandwidth utilization. However, since
Roundabout builds in-loop routing table with variable-length
nodeId field, this results in a relatively higher (yet still small)
bandwidth cost compared to ITSY. Both LB and DB have to
periodically send detection packets at high frequency to ensure
timely detection, which consumes more bandwidth.

1

10

100

1000

10000

FC
T

Sl
ow

do
w

n
of

 W
D

10K 100K 1M 10M
FlowSize (B)

1

10
FC

T
Sl

ow
do

w
n

of
 R

A
 &

 IT
SY

ITSY-50
ITSY-95
ITSY-99

RA-50
RA-95
RA-99

WD-50
WD-95
WD-99

Fig. 14: FCT slowdown with different schemes. Note that WD has
a different y-scale.

E. Evaluating Roundabout in Large-scale Networks.

We evaluate Roundabout (RA) with 2D-Torus topology and
Ali-Storage workload [2] with 80% link load, as described
in §VI-A. To evaluate the impact on flows affected before
and after the deadlock, we initiate flows within 0.1 seconds
following a Poisson distribution. We compare RA with (i)
ITSY with packet dropping, and (ii) PFC watchdog (WD)
deployed in the industry, which monitors for long-duration
PFC pauses and take measures such as packet drops or port
resets to maintain network stability. The watchdog threshold
is set to 200 ms [53].

Fig. 14 shows the flow completion time (FCT) slowdown,
flow’s actual FCT normalized by the base FCT when the
network has no other traffic, at the 50th, 95th, and 99th
percentiles under our settings. In the WD scenario, PFC pause
spreading caused by deadlock [20] affects the network. Most
flows are paused over 100 ms, since the watchdog threshold
is significantly higher than their theoretical completion time.
As a result, the FCT slowdowns of these flows increase
significantly, especially for short flows whose ideal FCT is
only tens of microseconds. Roundabout and ITSY detect
deadlocks quickly, allowing the network to promptly return
to normal and further avoiding the widespread of PFC pause
frames. However, ITSY’s detection is not always successful.
In the experiments where it successfully detects deadlocks, it

results in an average of 16 flows experiencing out-of-order
transmission and 7,952 packets being received out of order. In
contrast, Roundabout effectively detects deadlocks and does
not cause packet reordering, thereby minimizing the impact
on both senders and receivers.

VII. DISCUSSION

A. Concurrent Deadlocks

Multiple deadlock loops may overlap on links or nodes,
resulting in concurrent deadlocks. Roundabout selects and
subsequently breaks one of the deadlocks, thus automatically
resolving the others. (i) If these loops have different coordina-
tors, their probing messages will competing for Tcurr registers
at overlapped switches, and only the dominant message can
survive. Therefore, only the “optimal” coordinator can succeed
when synchronizing detection results. (ii) When multiple loops
share the same coordinator, probing message first propagates
along overlapping path and is then sent to distinct paths at
branching switch in a multicast manner. These probing packets
carrying the same messages will reach the convergence switch
in sequence. Only the first arrival will pass through and return
to the coordinator, thereby selecting a unique loop.

B. Hardware Feasibility

The objective of Roundabout is to operate as a build-
ing block to improve the deadlock-handling capabilities of
switches, which can be integrated in switch ASICs.

Meanwhile, as switches become increasingly programmable
[54, 55], Roundabout also shows promising potential to
achieve more flexible deployment. Most features required
by Roundabout have been natively supported by commodity
programmable hardware [55], including registers for casualty
recording, customized packet header parsing and deparsing,
user-defined packet processing, programmable packet gener-
ation, and dataplane advanced flow control to pause/resume
target queue [56]. PFC frames can be passed to the switch’s
programmable module by manipulating port configurations.
Although the length of ra hdr is variable from a global per-
spective, packet parsing and deparsing occur at fixed position
for a single switch (§IV-A). Therefore, the packet header
vector (PHV) overhead remains constant. The buffer manage-
ment scheme of Roundabout involves updating ingress queue
statistics by modifying counters, which is easy to achieve
line rate in ASICs. Some programmable switch designs, such
as Trio [54], also provide a read-modify-write engine to
increment or decrement packet/byte counters, which is worth
exploring and we will leave it as future work.

VIII. LIMITATIONS

To evaluate Roundabout under deadlocks, we used config-
urations that trigger deadlocks more frequently (e.g., mesh
topology, disabled congestion control, and more bursty work-
loads). In practice, deadlocks may occur less frequently. For
example, in Clos networks like fat-tree [2, 57], deadlocks can
be rare. Packets are typically routed in a loop-free manner,
such as through up/down routing paradigm [58], where a

spanning tree is constructed for the network, and packets are
forwarded up toward the root direction before being sent down
to the destination. This prevents routing loops and is therefore
deadlock-free [59]. However, factors such as link/node failures
or port flaps [16, 21, 60] can cause packets to deviate from
their intended paths, potentially introducing routing loops and
leading to deadlock. Some schemes are proposed to avoid such
loops, such as [16, 21] discussed in IX.

IX. RELATED WORK

PFC deadlock has been a popular research topic for many
years. Many approaches have been proposed that can be
classified into two categories: proactively avoid deadlock,
and reactively detect/resolve deadlock. We have discussed
deadlock detection/resolution schemes in detail in §II-B.

For deadlock avoidance, many approaches rely on routing
or topology restrictions [13–16]. However, this can lead to
reduced throughput, wasted link bandwidth [17], and may not
be suitable for various topologies and routing algorithms [14].
Moreover, such approaches tightly couple routing rules with
the network topology, making them inflexible for deploy-
ment [15]. Similarly, partitioning priorities into lossy and
lossless and scheduling flows across different priorities [21]
not only makes the network lossy, but also wastes valuable
bandwidth and priorities. Some other approaches adjust buffer
configurations of switches based on their locations to avoid
deadlocks [17], but this requires a relatively stable traffic
pattern, and can not eliminate the probability of deadlock.
Eliminating hold-and-wait condition to avoid deadlocks seems
promising [18], but it can impact the sending rate and requires
fine-grained controlling, which can be challenging in practice.
Adjusting flow control algorithms may reduce the probability
of deadlocks [2, 9, 51, 61] but are not 100% reliable.

X. CONCLUSION

We present Roundabout, a deadlock detection and resolution
scheme for PFC-enabled data center switches. We analyze
switch states within deadlock loops and propose an election-
based approach for efficient and robust deadlock detection.
We present a novel buffer collaboration scheme between and
within switches to resume packet flowing without requiring
buffer reconfiguration, which only leverages engineering re-
dundancy in the headroom buffer. Additionally, we analyze
the cause of packet reordering during deadlock resolution and
design an isolation-scheduling mechanism to maintain packet
order. Experimental results demonstrate that Roundabout can
effectively detect deadlocks in complex scenarios and effi-
ciently resolve deadlocks with minimal side effects.

ACKNOWLEDGMENTS

We thank our shepherd Soudeh Ghorbani and the anony-
mous reviewers for their insightful feedback. This work is
supported in part by National Key R&D Program of China
(Grant No. 2022YFB2901300), and in part by Major Key
Project of PCL (Grant No. PCL2023AS1-5, PCL2023AS1-3).
Heng Pan is the corresponding author.

REFERENCES

[1] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 202–215.

[2] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision congestion
control,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 44–58.

[3] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan et al., “When cloud storage meets rdma,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), 2021, pp. 519–533.

[4] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre, P. Bahl et al.,
“Empowering azure storage with rdma,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), 2023,
pp. 49–67.

[5] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian, S. Mitra, Y. Peng,
H. Wang, A. Klimovic, H. Yang et al., “Sonic: Application-aware data
passing for chained serverless applications,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21), 2021, pp. 285–301.

[6] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using rdma and htm,” in Proceedings of the
Eleventh European Conference on Computer Systems, 2016, pp. 1–17.

[7] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified
architecture for accelerating distributed dnn training in heterogeneous
gpu/cpu clusters,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 463–479.

[8] IEEE, “Priority-based flow control,” https://1.ieee802.org/dcb/802-1qb
b/, 2010.

[9] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537–550, 2015.

[10] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang et al., “Rdma over ethernet
for distributed training at meta scale,” in Proceedings of the ACM
SIGCOMM 2024 Conference, 2024, pp. 57–70.

[11] Y. Jiang, H. Gu, Y. Lu, and X. Yu, “2d-hra: Two-dimensional hierar-
chical ring-based all-reduce algorithm in large-scale distributed machine
learning,” IEEE Access, vol. 8, pp. 183 488–183 494, 2020.

[12] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng,
X. Li, C. Xie, S. Nong, Y. Jia, S. He, H. Chen, Z. Bai, Q. Hou,
S. Yan, D. Zhou, Y. Sheng, Z. Jiang, H. Xu, H. Wei, Z. Zhang, P. Nie,
L. Zou, S. Zhao, L. Xiang, Z. Liu, Z. Li, X. Jia, J. Ye, X. Jin,
and X. Liu, “MegaScale: Scaling large language model training to
more than 10,000 GPUs,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). Santa Clara, CA:
USENIX Association, Apr. 2024, pp. 745–760. [Online]. Available:
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

[13] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivious
routing for arbitrary topologies,” in 2011 IEEE International Parallel
& Distributed Processing Symposium. IEEE, 2011, pp. 616–627.

[14] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter,
“Practical dcb for improved data center networks,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications, 2014, pp. 1824–
1832.

[15] B. Stephens and A. L. Cox, “Deadlock-free local fast failover for
arbitrary data center networks,” in IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications,
2016, pp. 1–9.

[16] S. Zhao, Q. Zhang, P. Cao, X. Zhang, X. Wang, and C. Zhou, “Flattened
clos: Designing high-performance deadlock-free expander data center
networks using graph contraction,” in 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), 2023, pp.
663–683.

[17] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen,
“Deadlocks in datacenter networks: Why do they form, and how to
avoid them,” in Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, 2016, pp. 92–98.

[18] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: avoiding
deadlock in lossless networks,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 75–89.

[19] A. Shpiner and othersov, “Unlocking credit loop deadlocks,” in Pro-

ceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016,
pp. 85–91.

[20] X. C. Wu and T. E. Ng, “Detecting and resolving pfc deadlocks with itsy
entirely in the data plane,” in IEEE INFOCOM 2022-IEEE Conference
on Computer Communications, 2022, pp. 1928–1937.

[21] S. Hu, Y. Zhu, P. Cheng, C. Guo, K. Tan, J. Padhye, and K. Chen,
“Tagger: Practical pfc deadlock prevention in data center networks,”
in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, 2017, pp. 451–463.

[22] P. Lopez, J.-M. Martı́nez, and J. Duato, “A very efficient distributed
deadlock detection mechanism for wormhole networks,” in Proceedings
1998 Fourth International Symposium on High-Performance Computer
Architecture. IEEE, 1998, pp. 57–66.

[23] Z. Wang, L. Luo, Q. Ning, C. Zeng, W. Li, X. Wan, P. Xie, T. Feng,
K. Cheng, X. Geng et al., “Srnic: A scalable architecture for rdma
nics,” in 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), 2023, pp. 1–14.

[24] Cisco White Papers, “Priority flow control: build reliable layer-2 infras-
tructure,” 2010.

[25] “Traffic management user guide (qfx series switches and ex4600
switches),” https://www.juniper.net/documentation/us/en/software/j
unos/traffic-mgmt-qfx/traffic-mgmt-qfx.pdf, 2023.

[26] “Bcm88480 traffic management architecture,” https://docs.broadcom.co
m/doc/88480-DG1-PUB, 2021.

[27] L. Lv, “Adaptive pfc headroom,” https://www.ieee802.org/1/files/publi
c/docs2021/new-lv-adaptive-pfc-headroom-0121-v01.pdf, 2021.

[28] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Transactions On Net-
working, vol. 6, no. 2, pp. 130–140, 1998.

[29] V. Addanki, W. Bai, S. Schmid, and M. Apostolaki, “Reverie:
Low pass filter-based switch buffer sharing for datacenters with
RDMA and tcp traffic,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24). Santa Clara, CA:
USENIX Association, Apr. 2024, pp. 651–668. [Online]. Available:
https://www.usenix.org/conference/nsdi24/presentation/addanki-reverie

[30] NVIDIA, “UNDERSTANDING THE ALPHA PARAMETER IN
THE BUFFER CONFIGURATION OF MELLANOX SPECTRUM
SWITCHES,” https://enterprise-support.nvidia.com/s/article/unders
tanding-the-alpha-parameter-in-the-buffer-configuration-of-mellanox-s
pectrum-switches, 2022.

[31] NVIDIA Onyx User Manual v3.10.4302 (LTS), “Shared Buffers,” https:
//docs.nvidia.com/networking/display/onyxv3104302/shared+buffers,
2023.

[32] BROADCOM, “Bcm88480 traffic management architecture,” https://do
cs.broadcom.com/doc/88480-DG1-PUB.

[33] Intel, “P416 intel® tofinoTM switch,” https://www.intel.com/content/ww
w/us/en/products/network-io/programmable-ethernet-switch/tofino-serie
s.html.

[34] X. Wu et al., “Netpilot: Automating datacenter network failure miti-
gation,” in Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer
communication, 2012, pp. 419–430.

[35] K. Anjan and T. M. Pinkston, “An efficient, fully adaptive deadlock re-
covery scheme: Disha,” in Proceedings of the 22nd annual international
symposium on Computer architecture, 1995, pp. 201–210.

[36] S. K. R. Kakarla et al., “Finding network misconfigurations by automatic
template inference,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 999–1013.

[37] J. Lee, I. Hwang, S. Shah, and M. Cho, “Flexreduce: Flexible all-reduce
for distributed deep learning on asymmetric network topology,” in 2020
57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020,
pp. 1–6.

[38] NVIDIA, “Out-of-order (ooo) data placement,” https://docs.nvidia.com/
networking/display/MLNXOFEDv590560107/Out-of-Order+(OOO)+D
ata+Placement.

[39] NVIDIA, “Connectx-6 dx ethernet smartnic,” https://nvdam.widen.net/
s/qpszhmhpzt/networking-overal-dpu-datasheet-connectx-6-dx-smartni
c-1991450.

[40] Q. Li et al., “Flor: An open high performance rdma framework over
heterogeneous rnics,” in 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 2023, pp. 931–948.

[41] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan,
and Y. Wang, “Aeolus: A building block for proactive transport in
datacenters,” in Proceedings of the Annual conference of the ACM

Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 422–434.

[42] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 279–291.

[43] P. Zhang, H. Pan, Z. Li, P. Cui, R. Jia, P. He, Z. Zhang, G. Tyson,
and G. Xie, “Netsha: In-network acceleration of lsh-based distributed
search,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 9, pp. 2213–2229, 2021.

[44] Linux Foundation, “Data plane development kit (dpdk),” http://www.dp
dk.org, 2019.

[45] “NS3 network simulator,” https://www.nsnam.org, 2023.
[46] Z. Li and P. Mohapaira, “The impact of topology on overlay routing

service,” in IEEE INFOCOM 2004, vol. 1. IEEE, 2004.
[47] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-

hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[48] V. Addanki, O. Michel, and S. Schmid, “Powertcp: Pushing the perfor-
mance limits of datacenter networks,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), 2022, pp.
51–70.

[49] Cisco, “Evolve your ai/ml network with cisco silicon one,” https://ww
w.cisco.com/c/en/us/solutions/collateral/silicon-one/evolve-ai-ml-netwo
rk-silicon-one.html, 2023.

[50] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama et al., “Massively
distributed sgd: Imagenet/resnet-50 training in a flash,” arXiv preprint
arXiv:1811.05233, 2018.

[51] Y. Zhu et al., “Congestion control for large-scale rdma deployments,”
ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp.
523–536, 2015.

[52] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in
lossless networks,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 370–383.

[53] A. Gangidi, R. Miao, S. Zheng, S. J. Bondu, G. Goes, H. Morsy,
R. Puri, M. Riftadi, A. J. Shetty, J. Yang, S. Zhang, M. J. Fernandez,
S. Gandham, and H. Zeng, “Rdma over ethernet for distributed
training at meta scale,” in Proceedings of the ACM SIGCOMM
2024 Conference, ser. ACM SIGCOMM ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 57–70. [Online].
Available: https://doi.org/10.1145/3651890.3672233

[54] M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie, S. S. R. Kananda, C.-
H. Wu, and M. Ghobadi, “Using trio: juniper networks’ programmable
chipset-for emerging in-network applications,” in Proceedings of the
ACM SIGCOMM 2022 Conference, 2022, pp. 633–648.

[55] “Intel tofino 2.” https://www.intel.com/content/www/us/en/products/net
work-io/programmable-ethernet-switch/tofino-2-series.html, 2023.

[56] J. Lee, “Advanced Congestion & Flow Control with Programmable
Switches,” https://opennetworking.org/wp-content/uploads/2020/04
/JK-Lee-Slide-Deck.pdf, 2020.

[57] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM computer communication
review, vol. 38, no. 4, pp. 63–74, 2008.

[58] S. Y. Qiu, P. D. McDaniel, and F. Monrose, “Toward valley-free inter-
domain routing,” in 2007 IEEE International Conference on Communi-
cations, 2007, pp. 2009–2016.

[59] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious routing
in fat-tree based system area networks with uncertain traffic demands,”
IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp. 1439–1452,
2009.

[60] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
Fault-Tolerant engineered network,” in 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard,
IL: USENIX Association, Apr. 2013, pp. 399–412. [Online]. Available:
https://www.usenix.org/conference/nsdi13/technical-sessions/presentati
on/liu vincent

[61] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting
congestion management in lossless ethernet,” in 17th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 20),
2020, pp. 19–36.

